D-ITET, D-MATL, RW

Basisprüfung Lineare Algebra

Wichtige Hinweise

- Zweistündige Prüfung. Taschenrechner sind NICHT erlaubt.
- Alle Aufgaben werden gleich gewichtet.
- Begründen Sie jeweils Ihre Aussagen. Nicht motivierte Lösungen (ausser bei der Multiple-Choice-Aufgabe) werden nicht akzeptiert!
- Tragen Sie die Lösung der Aufgabe 6 (Multiple Choice) auf dem Extrablatt ein.

Name		Note
Vorname		
Studiengang		
Leginummer		
Prüfung	Lineare Algebra	
Datum	19.01.2015	

1	2	3	4	5	6	Punkte

- Bitte füllen Sie zuerst das Deckblatt aus.
- Legen Sie Ihre Legi auf den Tisch.
- Schalten Sie Ihr Handy aus.
- Beginnen Sie jede Aufgabe auf einer neuen Seite, und schreiben Sie Ihren Namen auf alle Blätter.
- Bitte nicht mit Bleistift schreiben. Auch nicht mit rot oder grün.
- Versuchen Sie Ihren Lösungsweg möglichst klar darzustellen und arbeiten Sie sorgfältig!
- Schauen Sie das Prüfungsblatt erst an, wenn der Assistent das Signal dazu gibt!

1. a) Finden Sie eine Basis für den Lösungsraum $\mathcal{L} \subset \mathbb{R}^5$ des homogenen linearen Gleichungssystemes

$$x_1 + 2x_2 - x_3 + 3x_4 - x_5 = 0$$

$$3x_1 - 2x_2 + 5x_3 - 3x_4 + 5x_5 = 0$$

$$x_1 + x_5 = 0$$

$$x_3 + x_4 = 0$$

- **b)** Es sei $A \in \mathbb{C}^{n \times n}$ mit $A^T = -A$. Zeigen Sie: Ist $n = 2k + 1, k \in \mathbb{N}$, so ist $\det(A) = 0$.
- **2. a)** Von den zwei unbekannten Grössen x_1, x_2 sind die folgenden gewichteten Mittelwerte gemessen worden:

$$\frac{1}{3}(x_1 + 2x_2) = 4$$

$$\frac{1}{3}(2x_1 + x_2) = 3$$

$$\frac{1}{3}(x_1 + x_2) = 4$$

Bestimmen Sie mit der Methode der kleinsten Quadrate die ausgeglichenen Werte für x_1, x_2 .

b) Aus einem Ausgleichsproblem Ax - c = r sei die Matrix

$$A = \begin{pmatrix} 1 & 1/\sqrt{2} \\ 0 & 1 \\ -1 & -1/\sqrt{2} \end{pmatrix}$$

und der Vektor $c = \left(\sqrt{2}, 1, -\sqrt{2}\right)^T$ gegeben. Die Matrix Q aus der QR-Zerlegung von A lautet

$$Q = \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix} .$$

Lösen Sie mittels der QR-Zerlegung das Ausgleichsproblem im Sinne der kleinsten Quadrate.

3. a) Für die Matrix

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

gilt $T_1^T A T_1 = D_1$ mit

$$T_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} , \qquad D_1 = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} .$$

Bestimmen Sie eine orthogonale Matrix T_2 und eine Diagonalmatrix D_2 so, dass für

$$B = \begin{pmatrix} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

 $T_2^T B T_2 = D_2$ gilt.

Hinweis: Nutzen Sie, falls nötig, das Schmidt'sche Orthogonalisierungsverfahren zur Bestimmung von T_2 .

b) Bestimmen Sie eine orthogonale Matrix T und eine Diagonalmatrix D so, dass für

$$C = \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 5 & -1 & 2 \\ 0 & 0 & -1 & 5 & 2 \\ 0 & 0 & 2 & 2 & 2 \end{pmatrix}$$

 $T^TCT=D$ gilt. Begründen Sie die Wahl von T und D.

c) Bestimmen Sie die Eigenwerte der Matrix C^4 .

4. a) Bestimmen Sie die allgemeine Lösung des linearen Differentialgleichungssystems

$$\dot{y}_1 = 2y_1 + 2y_2$$

$$\dot{y}_2 = 2y_1 + 3y_2 - 2y_3$$

$$\dot{y}_3 = -2y_2 + 4y_3$$

b) Bestimmen Sie Anfangswerte $y_1(0), y_2(0), y_3(0)$ des linearen Differentialgleichungssystems aus Teilaufgabe **a**), so, dass die zugehörige Lösung zur Zeit t = 1 die Werte 2, -1, 0 annimmt.

5. a) Konstruieren Sie mit Hilfe des Schmidt'schen Orthogonalisierungsverfahrens aus

$$a^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 , $a^{(2)} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $a^{(3)} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$,

eine orthonormale Basis in \mathbb{R}^3 .

b) Zeigen Sie, dass für eine orthogonale Matrix $A \in \mathbb{R}^{n \times n}$ gilt:

$$||A||_2 = 1$$
.

c) Betrachten Sie für einen Vektor $a \in \mathbb{R}^n$ die QR-Zerlegung, d.h. a = QR mit $R = \begin{pmatrix} r_{11} \\ 0 \end{pmatrix} \in \mathbb{R}^n$. Zeigen Sie, dass

$$|r_{11}| = ||a||_2$$
.

6. Multiple Choice:

- a) Für $v, w \in \mathbb{R}^3$ gilt: Sind v, w linear unabhängig, so ist $v \neq 0$ und $w \neq 0$.
- **b)** Für Vektoren u, v, w aus einem Vektorraum V gilt: Sind u, v linear unabhängig und v, w linear unabhängig, so sind auch u, v, w linear unabhängig.
- c) Die folgenden Vektoren sind linear abhängig:

$$\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}.$$

- d) Es sei A eine reelle $m \times n$ Matrix und $b \in \mathbb{R}^m$. Ist x_1 eine Lösung des linearen Gleichungssystemes Ax = b und x_0 eine Lösung des zugehörigen homogenen Gleichungssystemes, so ist $x_1 + x_0$ ebenfalls eine Lösung von Ax = b.
- e) Sei $\alpha \in \mathbb{R}$, $v \in \mathbb{R}^n$ mit $||v||_2 = 1$ und $A = I_n \alpha v v^T$, wobei I_n die $n \times n$ -Einheitsmatrix ist. Es gilt, A ist orthogonal für $\alpha = -1$ und $\alpha = 2$.
- **f**) Es sei $A=(a^{(1)},\ldots,a^{(n)})$ eine reelle $n\times n$ Matrix. Für jedes $j=1,\ldots,n$ und für alle $\lambda\in\mathbb{R}$ gilt

$$\det(\ldots, \lambda a^{(j)}, \ldots) = \lambda \det(\ldots, a^{(j)}, \ldots).$$

g) Die Matrix

$$A = \begin{pmatrix} -1 & 0 & -1 \\ -1 & -2 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

mit den Eigenwerten -2,-1+i,-1-i ist ähnlich zu einer reellen Blockdiagonalmatrix \tilde{D}

$$\tilde{D} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & -1 \end{pmatrix} .$$

Hinweis: Die Eigenwerte der Matrix A müssen nicht überprüft werden.

h) Wir betrachten die Singulärwertzerlegung $A = USV^T$ der Matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Es gilt

$$S = \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Viel Erfolg!